Influence of multidrug efflux systems on methylene blue-mediated photodynamic inactivation of Candida albicans.

نویسندگان

  • Renato A Prates
  • Ilka T Kato
  • Martha S Ribeiro
  • George P Tegos
  • Michael R Hamblin
چکیده

OBJECTIVES To investigate whether the major fungal multidrug efflux systems (MESs) affect the efficiency of methylene blue (MB)-mediated antimicrobial photodynamic inactivation (APDI) in pathogenic fungi and test specific inhibitors of these efflux systems to potentiate APDI. METHODS Candida albicans wild-type and mutants that overexpressed two classes of MESs [ATP-binding cassette (ABC) and major facilitator superfamily (MFS)] were tested for APDI using MB as the photosensitizer with and without addition of MES inhibitors. The uptake and cytoplasm localization of photosensitizer were achieved using laser confocal microscopy. RESULTS ABC MES overexpression reduced MB accumulation and APDI killing more than MFS MES overexpression. Furthermore, by combining MB APDI with the ABC inhibitor verapamil, fungal killing and MB uptake were potentiated, while by combining MB APDI with the MFS inhibitor INF(271), fungal killing and MB uptake were inhibited. This latter surprising finding may be explained by the hypothesis that the MFS channel can also serve as an uptake mechanism for MB. CONCLUSIONS The ABC pumps are directly implicated in MB efflux from the cell cytoplasm. Both the influx and efflux of MB may be regulated by MFS systems, and blocking this gate before incubation with MB can decrease the uptake and APDI effects. An ABC inhibitor could be usefully combined with MB APDI for treating C. albicans infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Photodynamic Therapy with 660 nm Diode Laser and Different Concentrations of Methylene Blue on Candida Albicans growth on Denture(laboratory study)

Background and Aim: Candida has an important role in denture-dependent stomatitis. The use of lasers and light-absorbing materials to act against this fungus has been suggested in some studies. In this study, the antifungal effects of 660 nm diode laser with different concentrations of methylene blue as a light absorbing agent against Candida albicans grown on dentures was investigated. Materia...

متن کامل

Gold Nanoparticle-Photosensitizer Conjugate Based Photodynamic Inactivation of Biofilm Producing Cells: Potential for Treatment of C. albicans Infection in BALB/c Mice

BACKGROUND Photodynamic therapy (PDT) has been found to be effective in inhibiting biofilm producing organisms. We investigated the photodynamic effect of gold nanoparticle (GNP) conjugated photosensitizers against Candida albicans biofilm. We also examined the photodynamic efficacy of photosensitizer (PS) conjugated GNPs (GNP-PS) to treat skin and oral C. albicans infection in BALB/c mice. M...

متن کامل

Gold nanoparticles enhance methylene blue–induced photodynamic therapy: a novel therapeutic approach to inhibit Candida albicans biofilm

This article explores the novel gold nanoparticle-enhanced photodynamic therapy of methylene blue against recalcitrant pathogenic Candida albicans biofilm. Physiochemical (X-ray diffraction, ultraviolet-visible absorption, photon cross-correlation, FTIR, and fluorescence spectroscopy) and electron microscopy techniques were used to characterize gold nanoparticles as well as gold nanoparticle-me...

متن کامل

Antimicrobial photodynamic inactivation inhibits Candida albicans virulence factors and reduces in vivo pathogenicity.

The objective of this study was to evaluate whether Candida albicans exhibits altered pathogenicity characteristics following sublethal antimicrobial photodynamic inactivation (APDI) and if such alterations are maintained in the daughter cells. C. albicans was exposed to sublethal APDI by using methylene blue (MB) as a photosensitizer (0.05 mM) combined with a GaAlAs diode laser (λ 660 nm, 75 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of antimicrobial chemotherapy

دوره 66 7  شماره 

صفحات  -

تاریخ انتشار 2011